Split half reliability

A. Arranging your data

Click on the 'Data View' window.

The diagram below shows dummy data for twenty participants who have completed a scale containing twelve items

						10		10	10			
	11	12	13	14	15	16	1/	18	19	110	111	112
1	2.00	3.00	2.00	1.00	3.00	2.00	3.00	2.00	1.00	2.00	3.00	4.00
2	4.00	5.00	2.00	3.00	4.00	3.00	4.00	2.00	4.00	3.00	5.00	3.00
3	3.00	2.00	1.00	3.00	2.00	3.00	2.00	1.00	2.00	3.00	4.00	4.00
4	4.00	5.00	3.00	4.00	3.00	4.00	5.00	4.00	3.00	5.00	3.00	3.00
5	5.00	3.00	4.00	3.00	4.00	5.00	2.00	3.00	5.00	3.00	4.00	3.00
6	2.00	1.00	3.00	2.00	3.00	2.00	1.00	2.00	1.00	2.00	3.00	1.00
7	1.00	1.00	2.00	2.00	2.00	1.00	3.00	2.00	3.00	2.00	1.00	2.00
8	1.00	4.00	5.00	3.00	4.00	3.00	4.00	5.00	4.00	3.00	2.00	3.00
9	2.00	3.00	3.00	2.00	1.00	3.00	2.00	3.00	2.00	1.00	2.00	3.00
10	3.00	1.00	1.00	1.00	4.00	1.00	3.00	2.00	3.00	2.00	1.00	2.00
11	3.00	4.00	3.00	2.00	3.00	4.00	5.00	4.00	3.00	5.00	3.00	5.00
12	2.00	1.00	2.00	1.00	2.00	1.00	3.00	2.00	3.00	2.00	1.00	1.00
13	3.00	3.00	4.00	1.00	2.00	2.00	4.00	3.00	5.00	3.00	4.00	3.00
14	2.00	2.00	2.00	1.00	3.00	2.00	3.00	2.00	1.00	2.00	1.00	2.00
15	3.00	3.00	2.00	1.00	2.00	1.00	3.00	4.00	3.00	2.00	4.00	2.00
16	3.00	3.00	4.00	3.00	4.00	5.00	4.00	3.00	5.00	3.00	3.00	5.00
17	4.00	3.00	3.00	4.00	3.00	4.00	2.00	4.00	3.00	5.00	3.00	4.00
18	1.00	2.00	1.00	3.00	2.00	3.00	2.00	1.00	2.00	2.00	1.00	1.00
19	3.00	2.00	2.00	2.00	1.00	3.00	2.00	3.00	2.00	1.00	2.00	2.00
20	3.00	4.00	3.00	2.00	5.00	2.00	3.00	2.00	3.00	3.00	3.00	3.00

Next you need to get the total score for the odd numbered items, 1, 3, 5....etc and the total scores for the even numbered items 2, 4, 6.... etc

	Go to 'Transform across the top, and then 'Compute Variable'											
												_
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata	Transform	<u>A</u> nalyze	Direct <u>M</u> arke	eting	<u>G</u> raphs	<u>U</u> tilitie	s Add- <u>o</u> ns	<u>W</u> indow	<u>H</u> elp
				📑 <u>C</u> ompu	ite Variable.				*		5	
<u>.</u>				Count V	/alues withi	n Cases						
1.			i1	Shi <u>f</u> t Va	lues				i5	iß	i7	
	1		2.00	🔤 Recod	e into <u>S</u> ame	Variables			3.00	2.00		3.00
1	2		4.00	🔤 <u>R</u> ecod	e into Differe	nt Variables	S		4.00	3.00) 4	1.00
	3	1	3.00	🛐 <u>A</u> utoma	atic Recode.				2.00	3.00) 2	2.00
4	4		4.00	📴 Visual	<u>B</u> inning				3.00	4.00) {	5.00
	5		5.00	🔀 Opt <u>i</u> ma	l Binning				4.00	5.00) 2	2.00
(6		2.00	<u>P</u> repar	e Data for M	odeling		•	3.00	2.00	1	1.00
	7		1.00	Rank C	ases				2.00	1.00	1	3.00
1	8	<u> </u>	1.00	🛱 Date a	nd Time Wiz	ard			4.00	3.00	4	1.00
	9	ļ	2.00		Time Series				1.00	3.00	2	2.00
1	0		3.00		mine Genes				4.00	1.00	3	3.00
1	1		3.00	Replac	e Missing <u>V</u>	alues			3.00	4.00	ł	5.00
1	2		2.00	😻 Rando	m Number <u>(</u>	Senerators	•		2.00	1.00	3	3.00
1	3		3.00	🐻 Run Pe	ending <u>T</u> rans	sforms	Ctrl+	-G	2.00	2.00	4	1.00
1	4		2.00	2.(00	2.00	1.0	0	3.00	2.00	1 3	3.00

You will then see a box appear which looks like the one below

Dr Martin Graff

Your data view window should now have two new variables called 'odd' and 'even' as below.

	i8	i9	i10	i11	i12	odd	even	var	
0	2.00	1.00	2.00	3.00	4.00	14.00	14.00		
0	2.00	4.00	3.00	5.00	3.00	23.00	19.00		
0	1.00	2.00	3.00	4.00	4.00	14.00	16.00		
0	4.00	3.00	5.00	3.00	3.00	21.00	25.00		
0	3.00	5.00	3.00	4.00	3.00	24.00	20.00		
0	2.00	1.00	2.00	3.00	1.00	13.00	10.00		
0	2.00	3.00	2.00	1.00	2.00	12.00	10.00		
0	5.00	4.00	3.00	2.00	3.00	20.00	21.00		
0	3.00	2.00	1.00	2.00	3.00	12.00	15.00		
0	2.00	3.00	2.00	1.00	2.00	15.00	9.00		
0	4.00	3.00	5.00	3.00	5.00	20.00	24.00		
0	2.00	3.00	2.00	1.00	1.00	13.00	8.00		
0	3.00	5.00	3.00	4.00	3.00	22.00	15.00		
0	2.00	1.00	2.00	1.00	2.00	12.00	11.00		
0	4.00	3.00	2.00	4.00	2.00	17.00	13.00		
0	3.00	5.00	3.00	3.00	5.00	23.00	22.00		
0	4.00	3.00	5.00	3.00	4.00	18.00	24.00		
0	1.00	2.00	2.00	1.00	1.00	9.00	12.00		
0	3.00	2.00	1.00	2.00	2.00	12.00	13.00		
0	2.00	3.00	3.00	3.00	3.00	20.00	16.00		

Running the correlation

- 10141 3733 31					
<u>T</u> ransform	Analyze Direct Markeling	g <u>G</u> ruphs	s <u>U</u> tilities	s Add- <u>o</u> ns	Windo
i2 3.0 5.0 2.0 5.0 3.0 1.0	Reports Descriptive Statistics Tables Compare Means General Linear Mode Generalized Linear M Mixed Nodels Correlate Regression Loglinear	I I I I I I I I I I I I I I I I I I I	iB 8.00 4.00 2.00 10 <u>Bivar</u> 10 <u>Dista</u>	i6 2.00 3.00 3.00 iate al ances	
4.0 3.0 1.0 4.0 3.0 2.0 3.0 3.0 3.0 2.0 2.0 4.0	Neural Networks Classify Dimension Reduction Scale Nonparametric Tests Forecasting Survival Multiple Response Missing Value Analys Multiple Imputation Complex Samples Quality Control ROC Curve	n	4.00 1.00 4.00 2.00 2.00 3.00 2.00 4.00 3.00 2.00 1.00 5.00	3.00 3.00 1.00 4.00 2.00 2.00 2.00 1.00 5.00 4.00 3.00 3.00 2.00	

3. Bivariate Correlations			X
2.0 4.0 2.0 3.0 4.12 3.0 4.12 3.0 4.12 3.0 4.12 3.0 4.12 5.13 6.14 4.0 5.15 3.0 4.16 4.12 1.12	Variables:		Options Bootstrap
4.0 Image:	s Il's tau-b 📄 <u>S</u> pearman		
Test of Significance	toiled		
✓ <u>Flag significant corre</u>	lations		
ОК	Paste Reset C	ancel Help	

The Output

The output will look like in the diagram below. It shows us we have a correlation between odd and even items of 069.

